QLS-Integrality of Complete r-Partite Graphs

Milan Pokornýa
${ }^{a}$ Trnava University, Faculty of Education, Priemyselna 4, P.O.BOX 9, 91843 Trnava, Slovakia

Abstract

A graph G is called A-integral (L-integral, Q-integral, S-integral) if the spectrum of its adjacency (Laplacian, signless Laplacian, Seidel) matrix consists entirely of integers. In this paper we study connections between the Q- ($\mathrm{L}, \mathrm{S}, \mathrm{A}$) integral complete multipartite graphs. Moreover, new sufficient conditions for a construction of infinite families of QLS-integral complete $r^{\prime \prime}$-partite graphs $K_{p_{1}, p_{2}, \ldots, p_{r}^{\prime \prime}}=K_{b_{1}, p_{1}, b_{2} \cdot p_{2}, \ldots, b_{s} \cdot p_{s}}$ from given QLS-integral r^{\prime}-partite graphs $K_{p_{1}, p_{2}, \ldots, p_{r^{\prime}}}=K_{a_{1}, p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$ are given. Using these conditions new infinite classes of such graphs for $s=4,5,6$ are constructed, which affirmatively answers to questions proposed by Wang, Zhao and Li in [10, 14]. Finally, we propose open problems for further study.

1. Introduction

We shall start with some definitions to a general M-theory.
Let G be a simple graph on n vertices, and let M be a real symmetric matrix associated to G. The characteristic polynomial $|x I-M|$ of M is called the M-characteristic polynomial (or M-polynomial) of G and is denoted by $M_{G}(x)$. The eigenvalues of M (i.e. the zeros of $M_{G}(x)$) are also called the M-eigenvalues of $G(M$-spectrum of $G)$. The M-spectrum of G is real because M is symmetric.

In particular, if M is equal to one of the matrices A (adjacency matrix), $Q=D(G)+A, L=D(G)-A$, $S=J-I-2 A$, where $D(G)$ is the diagonal matrix of the vertex degrees in G and J is a square matrix with all elements equal to 1 , then the corresponding spectrum is called A-spectrum, Q-spectrum, L-spectrum and S-spectrum, respectively. Throughout the paper the corresponding characteristic polynomials are denoted by $P_{G}(x)=|x I-A|, Q_{G}(x)=|x I-Q|, L_{G}(x)=|x I-L|, S_{G}(x)=|x I-S|$, respectively. The zeros of these polynomials are denoted by $\lambda_{i} ; i=1,2, \ldots, n, \mu_{i} ; i=1,2, \ldots, n, \kappa_{i} ; i=1,2, \ldots, n$ and $\rho_{i} ; i=1,2, \ldots, n$, respectively. A graph G is M-integral, $M \in\{A, Q, L, S\}$, if all the eigenvalues of its M-polynomial are integers. The study of integral graphs was initiated in [3]. A survey of integral graphs is given in [1]. For a connections between M theories see [2].

A complete r-partite graph $K_{p_{1}, p_{2}, \ldots, p_{r}}$ is a graph with a set $V=V_{1} \cup V_{2} \cup \cdots \cup V_{r}$ of $|V|=p_{1}+p_{2}+\cdots+p_{r}$ vertices, where V_{i} 's are nonempty disjoint sets, $\left|V_{i}\right|=p_{i}$ for $1 \leq i \leq r$, such that two vertices in V are adjacent if and only if they belong to different V_{i} 's. Assume that the number of distinct integers of $p_{1}, p_{2}, \ldots, p_{r}$ is s. Without loss of generality, assume that the first s ones are distinct integers such that $p_{1}<p_{2}<\cdots<p_{s}$. The complete r-partite graph $K_{p_{1}, p_{2}, \ldots, p_{r}}=K_{p_{1}, \ldots, p_{1}, \ldots, p_{s}, \ldots, p_{s}}$ is also denoted by $K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$, where $r=\sum_{i=1}^{s} a_{i}$

[^0]and $|V|=\sum_{i=1}^{s} a_{i} p_{i}$. For results on A-integral complete r-partite graphs see for example [4-6, 9, 11-13]. For results on Q-integral complete r-partite graphs see for example [8, 14], for results on S-integral complete r-partite graphs see [7, 8, 10] and for results on L-integral complete r-partite graphs see [15].

In this paper we give a relationship for M-integrality of complete r-partite graphs where $M \in\{A, Q, L, S\}$. For example, it is easy to see that if $K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$ is Q-integral, then it is also S-integral and L-integral. We also give new sufficient conditions for a construction of infinite classes of Q-integral (S-integral) complete $r^{\prime \prime}$-partite graphs to a given Q-integral (S-integral) complete r^{\prime}-partite graph. Using these conditions we construct infinite classes of QLS-integral complete multipartite graphs, which affirmatively answers to questions 4.1 and 4.2 of [10] and also questions 4.1 and 4.2 of [14]. Although concrete examples of QLS-integral complete multipartite graphs $K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$ with $s=4,5,6$ are given in [8], in this paper we construct infinite classes of these graphs. Finally, we propose open problems for further study.

2. Preliminaries

In [14] Zhao et al. gave necessary and sufficient conditions for complete multipartite graphs $K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$ to be Q-integral, which are given in the following theorem.

Theorem 2.1. [14] If the complete r-partite graph $K_{p_{1}, p_{2}, \ldots, p_{r}}=K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$ on n vertices, $n=a_{1} p_{1}+a_{2} p_{2}+\cdots+a_{s} p_{s}$, is Q-integral, then there exists integers $\mu_{i}(i=1,2, \ldots, s)$ such that

$$
\begin{equation*}
-\infty<n-2 p_{s}<\mu_{s}<n-2 p_{s-1}<\mu_{s-1}<\cdots<n-2 p_{1}<\mu_{1}<\infty \tag{1}
\end{equation*}
$$

and the positive integers $a_{i}(i=1,2, \ldots, s)$ satisfying

$$
\begin{equation*}
a_{k}=\frac{\prod_{i=1}^{s}\left(\mu_{i}-n+2 p_{k}\right)}{p_{k} \prod_{i=1, i \neq k}^{s} 2\left(p_{k}-p_{i}\right)} ; k=1,2, \ldots, s \tag{2}
\end{equation*}
$$

Conversely, suppose that there exist integers $\mu_{i}(i=1,2, \ldots, s)$ such that $-\infty<n-2 p_{s}<\mu_{s}<n-2 p_{s-1}<\mu_{s-1}<$ $\cdots<n-2 p_{1}<\mu_{1}<\infty$ and the numbers

$$
a_{k}=\frac{\prod_{i=1}^{s}\left(\mu_{i}-n+2 p_{k}\right)}{p_{k} \prod_{i=1, i \neq k}^{s} 2\left(p_{k}-p_{i}\right)} ; k=1,2, \ldots, s
$$

are positive integers. Then the complete r-partite graph $K_{p_{1}, p_{2}, \ldots, p_{r}}=K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$ is Q-integral.
In [10] Wang et al. gave similar necessary and sufficient conditions for multipartite graphs $K_{p_{1}, p_{2}, \ldots, p_{r}}=$ $K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$ to be S-integral.

Theorem 2.2. [10] If the complete r-partite graph $K_{p_{1}, p_{2}, \ldots, p_{r}}=K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$ on n vertices is S-integral then there exists integers $\rho_{i}(i=1,2, \ldots, s)$ such that

$$
\begin{equation*}
\rho_{1}<2 p_{1}-1<\rho_{2}<2 p_{2}-1<\cdots<2 p_{s-1}-1<\rho_{s}<2 p_{s}-1<\infty \tag{3}
\end{equation*}
$$

and the numbers $a_{1}, a_{2}, \ldots, a_{s}$ satisfying

$$
\begin{equation*}
a_{k}=-\frac{\prod_{i=1}^{s}\left(\rho_{i}-2 p_{k}+1\right)}{p_{k} \prod_{i=1, i \neq k}^{s} 2\left(p_{i}-p_{k}\right)} ; k=1,2, \ldots, s \tag{4}
\end{equation*}
$$

are positive integers.
Conversely, suppose that there exist integers $\rho_{i}(i=1,2, \ldots, s)$ such that $\rho_{1}<2 p_{1}-1<\rho_{2}<2 p_{2}-1<\cdots<$ $2 p_{s-1}-1<\rho_{s}<2 p_{s}-1<\infty$ and the numbers

$$
a_{k}=-\frac{\prod_{i=1}^{s}\left(\rho_{i}-2 p_{k}+1\right)}{p_{k} \prod_{i=1, i \neq k}^{s} 2\left(p_{i}-p_{k}\right)} ; k=1,2, \ldots, s
$$

are positive integers. Then the complete r-partite graph $K_{p_{1}, p_{2}, \ldots, p_{r}}=K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$ is S-integral.
The following theorem gives a relationship between Q-integrality and S-integrality of complete r-partite graphs.

Theorem 2.3. [8] A complete multipartite graph is S-integral if and only if it is Q-integral.
The theorem straightforward follows from the fact that for the nontrivial factors of the Q- and Scharacteristic polynomials

$$
Q^{*}(x)=\prod_{i=1}^{s}\left(x-n+2 p_{i}\right)\left(1-\sum_{i=1}^{s} \frac{p_{i}}{x-n+2 p_{i}}\right)
$$

and

$$
S^{*}(x)=\prod_{i=1}^{s}\left(x-2 p_{i}+1\right)\left(1+\sum_{i=1}^{s} \frac{p_{i}}{x-2 p_{i}+1}\right)
$$

holds that

$$
S^{*}(x)=(-1)^{s} Q^{*}(n-x-1)
$$

from which follows that Theorem 2.2 can be proved from Theorem 2.1 using substitution $\rho_{i}=n-\mu_{i}-1$.
Theorem 2.4. [15] The graph $K_{p_{1}, p_{2}, \ldots, p_{r}}$ is L-integral for every positive integers p_{i} and its L-spectrum is $\left\{0, n^{r-1},(n-\right.$ $\left.\left.p_{i}\right)^{p_{i}-1}\right\} ; i=1,2, \ldots, r$, where n is the number of vertices of $K_{p_{1}, p_{2}, \ldots, p_{r}}$.

Example 2.5. We shall give here A-spectrum, Q-spectrum, L-spectrum and S-spectrum for two classes of graphs: complete graphs $K_{p_{1}}$ and complete a_{1}-partite graphs $K_{a_{1} \cdot p_{1}}$.

Complete graph $K_{p_{1}}, p_{1} \geq 2$:
A: $\left\{p_{1}-1,(-1)^{p_{1}-1}\right\}$
$Q:\left\{2\left(p_{1}-1\right),\left(p_{1}-2\right)^{p_{1}-1}\right\}$
L: $\left\{0, p_{1}^{p_{1}-1}\right\}$
$S:\left\{p_{1}-1,(-1)^{p_{1}-1}\right\}$
Complete a_{1}-partite graph $K_{a_{1} \cdot p_{1}}$:
$A:\left\{p_{1}\left(a_{1}-1\right),(-1)^{a_{1}-1}, 0^{a_{1} p_{1}-a_{1}}\right\}$
$Q:\left\{2 p_{1}\left(a_{1}-1\right),\left(a_{1} p_{1}-2 p_{1}\right)^{a_{1}-1},\left(a_{1} p_{1}-p_{1}\right)^{a_{1}\left(p_{1}-1\right)}\right\}$
$L:\left\{0, a_{1} p_{1}^{a_{1}-1},\left(a_{1} p_{1}-p_{1}\right)^{a_{1}\left(p_{1}-1\right)}\right\}$
S: $\left\{p_{1}-1,(-1)^{a_{1} p_{1}-1}\right\}$
So $K_{p_{1}}$ and $K_{a_{1} \cdot p_{1}}$ are AQLS-integral for any $a_{1}, p_{1} \in N$.

3. Main Results

The following two theorems give constructions of the infinite class of Q-integral (S-integral) graphs $K_{b_{1} \cdot p_{1}, b_{2} \cdot p_{2}, \ldots, b_{s} \cdot p_{s}}$ from known Q-integral (S-integral) graph $K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$. The similar theorem for A-integral graphs is given in [4].

Theorem 3.1. Let the complete r^{\prime}-partite graph $K_{p_{1}, p_{2}, \ldots, p_{r^{\prime}}}=K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$ on $n=a_{1} p_{1}+a_{2} p_{2}+\cdots+a_{s} p_{s}$ vertices with non-zero eigenvalues $\mu_{i}(i=1,2, \ldots, s)$ is Q-integral, where $\mu_{i}(i=1,2, \ldots, s)$ are all Q-eigenvalues of the
 Q-integral with non-zero Q-eigenvalues $\mu_{i}^{\prime}(i=1,2, \ldots, s)$, for

$$
\begin{align*}
& d_{k}=G C D\left(\prod_{i=2}^{s}\left(\mu_{i}-n+2 p_{k}\right), p_{k} \prod_{i=1, i \neq k}^{s} 2\left(p_{k}-p_{i}\right)\right), k=1,2, \ldots, s, \tag{5}\\
& s_{k}=\frac{\prod_{i=2}^{s}\left(\mu_{i}-n+2 p_{k}\right)}{d_{k}}, k=1,2, \ldots, s, \tag{6}\\
& r=\operatorname{LCM}\left(r_{1}, r_{2}, \ldots, r_{s}\right), r_{k}=\frac{p_{k} \prod_{i=1, i \neq k}^{s} 2\left(p_{k}-p_{i}\right)}{d_{k}}, k=1,2, \ldots, s, \tag{7}\\
& b_{k}=a_{k}+\frac{s_{k} r}{r_{k}} t, k=1,2, \ldots, s, \tag{8}\\
& \mu_{1}^{\prime}=\mu_{1}+2 r t, \mu_{i}^{\prime}=\mu_{i}+r t, i=2, \ldots, s, \tag{9}\\
& n^{\prime}=n+r t, \tag{10}
\end{align*}
$$

for any positive integer t.
Proof. Using (2),(5-10) and Theorem 2.1 we have

$$
\begin{gathered}
b_{k}=a_{k}+r \frac{s_{k}}{r_{k}} t ; k=1,2, \ldots, s, \\
b_{k}=a_{k}+r \frac{\prod_{i=2}^{s}\left(\mu_{i}-n+2 p_{k}\right)}{p_{k} \prod_{i=1, i \neq k}^{s} 2\left(p_{k}-p_{i}\right)} t ; k=1,2, \ldots, s, \\
b_{k}=\frac{\left(\mu_{1}-n+2 p_{k}\right) \prod_{i=2}^{s}\left(\mu_{i}-n+2 p_{k}\right)+r t \prod_{i=2}^{s}\left(\mu_{i}-n+2 p_{k}\right)}{p_{k} \prod_{i=1, i \neq k}^{s} 2\left(p_{k}-p_{i}\right)} ; k=1,2, \ldots, s, \\
b_{k}=\frac{\left(\mu_{1}-n+2 p_{k}+r t\right) \prod_{i=2}^{s}\left(\mu_{i}-n+2 p_{k}\right)}{p_{k} \prod_{i=1, i \neq k}^{s} 2\left(p_{k}-p_{i}\right)} ; k=1,2, \ldots, s, \\
b_{k}=\frac{\left(2 r t+\mu_{1}-n-r t+2 p_{k}\right) \prod_{i=2}^{s}\left(r t+\mu_{i}-n-r t+2 p_{k}\right)}{p_{k} \prod_{i=1, i \neq k}^{s} 2\left(p_{k}-p_{i}\right)} ; k=1,2, \ldots, s, \\
b_{k}=\frac{\left(\mu_{1}^{\prime}-n^{\prime}+2 p_{k}\right) \prod_{i=2}^{s}\left(\mu_{i}^{\prime}-n^{\prime}+2 p_{k}\right)}{p_{k} \prod_{i=1, i \neq k}^{s} 2\left(p_{k}-p_{i}\right)} ; k=1,2, \ldots, s .
\end{gathered}
$$

From (6) and (7) follows that $b_{k}, k=1,2, \ldots, s$ are positive integers for every nonnegative integer t.
By Theorem 2.1 we have $-\infty<n-2 p_{s}<\mu_{s}<n-2 p_{s-1}<\mu_{s-1}<\ldots<n-2 p_{1}<\mu_{1}<+\infty$, from which we get $-\infty<n+r t-2 p_{s}<\mu_{s}+r t<n+r t-2 p_{s-1}<\mu_{s-1}+r t<\ldots<n+r t-2 p_{1}<\mu_{1}+r t<\mu_{1}+2 r t<+\infty$. Using (9) we get $-\infty<n^{\prime}-2 p_{s}<\mu_{s}^{\prime}<n^{\prime}-2 p_{s-1}<\mu_{s-1}^{\prime}<\ldots<n^{\prime}-2 p_{1}<\mu_{1}^{\prime}<+\infty$.

Now, by Theorem 2.1, the graph $K_{b_{1} \cdot p_{1}, b_{2} \cdot p_{2}, \ldots, b_{s} \cdot p_{s}}$ is Q-integral.

Theorem 3.2. Let the complete r^{\prime}-partite graph $K_{p_{1}, p_{2}, \ldots, p_{r^{\prime}}}=K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$ on $n=a_{1} p_{1}+a_{2} p_{2}+\cdots+a_{s} p_{s}$ vertices with non-zero eigenvalues $\rho_{i}(i=1,2, \ldots, s)$ is S-integral, where $\rho_{i}(i=1,2, \ldots, s)$ are all S-eigenvalues of the nontrivial part of its S-spectrum. Then complete $r^{\prime \prime}$-partite graph $K_{p_{1}, p_{2}, \ldots, p_{r}^{\prime \prime}}=K_{b_{1}, p_{1}, b_{2} \cdot p_{2}, \ldots, b_{s} \cdot p_{s}}$ on n^{\prime} vertices is S-integral with non-zero S-eigenvalues $\rho_{i}^{\prime}(i=1,2, \ldots, s)$, for

$$
\begin{align*}
& d_{k}=G C D\left(\prod_{i=2}^{s}\left(\rho_{i}-2 p_{k}+1\right), p_{k} \prod_{i=1, i \neq k}^{s} 2\left(p_{i}-p_{k}\right)\right), k=1,2, \ldots, s, \tag{11}\\
& s_{k}=\frac{\prod_{i=2}^{s}\left(\rho_{i}-2 p_{k}+1\right)}{d_{k}}, k=1,2, \ldots, s, \tag{12}\\
& r=\operatorname{LCM}\left(r_{1}, r_{2}, \ldots ., r_{s}\right), r_{k}=\frac{p_{k} \prod_{i=1, i \neq k}^{s} 2\left(p_{i}-p_{k}\right)}{d_{k}}, k=1,2, \ldots, s, \tag{13}\\
& b_{k}=a_{k}+\frac{s_{k} r}{r_{k}} t, k=1,2, \ldots, s, \tag{14}\\
& \rho_{1}^{\prime}=\rho_{1}-r t, \rho_{i}^{\prime}=\rho_{i}, i=2, \ldots, s, \tag{15}
\end{align*}
$$

for any positive integer t.
Proof. Proof is similar to the proof of theorem 3.1 and follows from theorem 2.2.
From Theorems 2.3 and 2.4 we have the following corollary.
Corollary 3.3. Let $G=K_{p_{1}, p_{2}, \ldots, p_{r}}$. The following statements are equivalent:

1. G is Q-integral.
2. G is S-integral.
3. G is QLS-integral.

From Corollary 3.3 and Corollary 2.9 of [14] we have the following corollary.
Corollary 3.4. For any positive integer q, the complete multipartite graph $K_{a_{1} \cdot p_{1} q, a_{2} \cdot p_{2} q, \ldots, a_{s} \cdot p_{s} q}$ is QLS-integral if and only if the graph $K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$ is QLS-integral.

Remark 3.5. Let $G C D\left(p_{1}, \ldots, p_{s}\right)$ denote the greatest common divisor of the numbers p_{1}, \ldots, p_{s}. Corollary 3.4 shows that it is reasonable to study QLS-integrality of graphs $K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$ only for $\operatorname{GCD}\left(p_{1}, \ldots, p_{s}\right)=1$.

4. Application of Main Results to Construction of New Classes of QLS-Integral Complete Multipartite Graphs

It is easy to see that for complete bipartite graphs we have the following results.

Corollary 4.1.

a. The graph $K_{p_{1}, p_{2}}$ is QLS-integral for any positive integers p_{1}, p_{2}.
b. The graph $K_{p_{1}, p_{2}}$ is AQLS-integral if and only if $p_{1} \cdot p_{2}$ is a perfect square.

Table 1: QLS-integral complete graphs $K_{b_{1}}, p_{1}, b_{2}-p_{2}, b_{3} \cdot p_{3}, b_{4} \cdot p_{4}$.

No.	1	2	3	4	5	6	7	8
a_{1}	4	8	17	20	18	22	17	15
p_{1}	2	2	2	1	1	1	3	2
a_{2}	1	2	2	4	5	4	2	3
p_{2}	6	9	7	5	3	10	7	7
a_{3}	1	1	2	3	2	1	1	1
p_{3}	9	15	9	7	7	14	12	12
a_{4}	1	1	1	2	2	1	2	3
p_{4}	24	20	11	10	22	19	18	18
μ_{1}	71	117	143	151	161	171	209	213
μ_{2}	39	59	67	76	87	87	101	108
μ_{3}	32	44	61	69	80	69	92	97
μ_{4}	11	33	56	63	61	60	83	89
ρ_{1}	-25	-49	-67	-71	-71	-77	-97	-97
ρ_{2}	7	9	9	4	3	7	11	8
ρ_{3}	14	24	15	11	10	25	20	19
ρ_{4}	35	35	20	17	29	34	29	27
r	504	3432	9240	1260	1596	5928	1320	1320
b_{1}	$4+72 t$	$8+528 t$	$17+2244 t$	$20+350 t$	$18+399 t$	$22+1672 t$	$17+220 t$	$15+198 t$
b_{2}	$1+14 t$	$2+104 t$	$2+231 t$	$4+63 t$	$5+105 t$	$4+247 t$	$2+24 t$	$3+36 t$
b_{3}	$1+12 t$	$1+44 t$	$2+220 t$	$3+45 t$	$2+38 t$	$1+57 t$	$1+11 t$	$1+11 t$
b_{4}	$1+7 t$	$1+39 t$	$1+105 t$	$2+28 t$	$2+28 t$	$1+52 t$	$2+20 t$	$3+30 t$

Now, using computer search, Theorems 3.1,3.2 and Corollary 3.3 we construct new infinite classes of QLS-integral complete multipartite graphs $K_{b_{1} \cdot p_{1}, b_{2} \cdot p_{2}, \ldots, b_{s} \cdot p_{s}}$ where $s=4,5,6$.

By computer we have found 8 Q-integral (S-integral) complete multipartite graphs $K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{4} \cdot p_{4}}$ on less than 120 vertices (see also [8]). Their list together with the nontrivial part of their Q-spectrum (Sspectrum) is in the table 1, rows 2-17. Moreover, using theorems 3.1 and 3.2 and corollary 3.3 we can construct infinite classes of QLS-integral complete multipartite graphs $K_{b_{1} \cdot p_{1}, b_{2} \cdot p_{2}, b_{3} \cdot p_{3}, b_{4} \cdot p_{4}}$ for each of these graphs. The parameters b_{i} of these infinite classes are presented in table 1. Note that the non-trivial part of their Q-spectrum (S-spectrum) can be calculated using Theorems 3.1 and 3.2, formulas (9) and (15).

Corollary 4.2.

a. Let $a_{1}, p_{1}, a_{2}, p_{2}, a_{3}, p_{3}, a_{4}, p_{4}$ be those of Table 1. Then $K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, a_{3} \cdot p_{3}, a_{4} \cdot p_{4}}$ is QLS-integral complete multipartite graph.
b. Let $b_{1}, p_{1}, b_{2}, p_{2}, b_{3}, p_{3}, b_{4}, p_{4}$ be those of Table 1. Then $K_{b_{1} \cdot p_{1}, b_{2} \cdot p_{2}, b_{3} \cdot p_{3}, b_{4} \cdot p_{4}}$ is QLS-integral complete multipartite graph for every $t \in N$.

Proof.
a. It is sufficient to use Theorems 2.1, 2.2 and 2.3.
b. It is sufficient to use Theorems 2.3, 3.1 and 3.2.

Using computer we have found 7 Q-integral (S-integral) complete multipartite graphs
$K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, a_{3} \cdot p_{3}, a_{4} \cdot p_{4}, a_{5} \cdot p_{5}}$ on less than 1000 vertices (see also [8]). Their list together with the nontrivial part of their Q-spectrum (S-spectrum) is in Table 2, rows 2-21. Moreover, using Theorems 3.1, 3.2 and Corollary 3.3 we can construct infinite classes of QLS-integral complete multipartite graphs $K_{b_{1} \cdot p_{1}, b_{2} \cdot p_{2}, b_{3} \cdot p_{3}, b_{4} \cdot p_{4}, b_{5} \cdot p_{5}}$ for each of these graphs. The parameters b_{i} of these infinite classes are presented in table 2. Note that the non-trivial part of their Q-spectrum (S-spectrum) can be calculated using Theorems 3.1 and 3.2, formulas (9) and (15).

Table 2: QLS-integral complete graphs $K_{b_{1}} \cdot p_{1}, b_{2} \cdot p_{2}, b_{3} \cdot p_{3}, b_{4} \cdot p_{4}, b_{5} \cdot p_{5}$.

No.	1	2	3	4	5	6	7
a_{1}	39	46	15	18	36	9	20
p_{1}	3	2	4	11	5	8	2
a_{2}	3	9	18	2	13	4	17
p_{2}	12	10	10	18	15	14	9
a_{3}	2	7	4	6	6	5	2
p_{3}	17	15	13	20	25	19	16
a_{4}	1	6	5	3	3	14	1
p_{4}	27	21	15	26	39	23	29
a_{5}	3	4	9	5	1	3	12
p_{5}	45	27	20	37	49	50	42
μ_{1}	655	1011	1067	1189	1341	1339	1454
μ_{2}	331	512	537	587	673	676	752
μ_{3}	319	497	523	580	649	665	730
μ_{4}	301	485	519	569	621	655	718
μ_{5}	280	471	512	553	596	607	698
ρ_{1}	-307	-491	-521	-573	-651	-645	-697
ρ_{2}	17	8	9	29	17	18	5
ρ_{3}	29	23	23	36	41	29	27
ρ_{4}	47	35	27	47	69	39	39
ρ_{5}	68	49	34	63	94	87	59
r	67320	1175720	240240	2217072	3403400	6588120	158340
b_{1}	$39+8415 t$	$46+109480 t$	$15+6825 t$	$18+67184 t$	$36+185640 t$	$9+89838 t$	$20+4524 t$
b_{2}	$3+612 t$	$9+20748 t$	$18+8008 t$	$2+7293 t$	$13+65065 t$	$4+39215 t$	$17+3770 t$
b_{3}	$2+396 t$	$7+15827 t$	$4+1760 t$	$6+21736 t$	$6+29172 t$	$5+48300 t$	$2+435 t$
b_{4}	$1+187 t$	$6+13260 t$	$5+2184 t$	$3+10659 t$	$3+14025 t$	$14+133672 t$	$1+210 t$
b_{5}	$3+510 t$	$4+8645 t$	$9+3861 t$	$5+17160 t$	$1+4550 t$	$3+26565 t$	$12+2436 t$

Corollary 4.3.

a. Let $a_{1}, p_{1}, a_{2}, p_{2}, a_{3}, p_{3}, a_{4}, p_{4}, a_{5}, p_{5}$ be those of Table 2. Then $K_{a_{1} . p_{1}, a_{2} \cdot p_{2}, a_{3}, p_{3}, a_{4} \cdot p_{4}, a_{5} \cdot p_{5}}$ is QLS-integral complete multipartite graph.
b. Let $b_{1}, p_{1}, b_{2}, p_{2}, b_{3}, p_{3}, b_{4}, p_{4}, b_{5}, p_{5}$ be those of Table 2. Then $K_{b_{1}} \cdot p_{1}, b_{2} \cdot p_{2}, b_{3} \cdot p_{3}, b_{4} \cdot p_{4}, b_{5} \cdot p_{5}$ is QLS-integral complete multipartite graph for every $t \in N$.

Proof. The proof is similar to that of corollary 4.2.

Corollary 4.4.

a. Let $a_{1}=44, p_{1}=6, a_{2}=107, p_{2}=10, a_{3}=24, p_{3}=13, a_{4}=50, p_{4}=19, a_{5}=25, p_{5}=24, a_{6}=53, p_{6}=33$. Then $K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, a_{3} \cdot p_{3}, a_{4} \cdot p_{4}, a_{5} \cdot p_{5}, a_{6} \cdot p_{6}}$ is QLS-integral complete multipartite graph. The nontrivial part of its Q-spectrum is $\{9847,4932,4921,4915,4901,4889\}$ and the nontrivial part of its S-spectrum is $\{-4903,12,23,29,43,55\}$.
b. Let $b_{1}=44+846032 t, p_{1}=6, b_{2}=107+2054052 t, p_{2}=10, b_{3}=24+460161 t, p_{3}=13, b_{4}=50+956340 t$, $p_{4}=19, b_{5}=25+477204 t, p_{5}=24, b_{6}=53+1008007 t, p_{6}=33$. Then $K_{b_{1}} \cdot p_{1}, b_{2} \cdot p_{2}, b_{3} \cdot p_{3}, b_{4} \cdot p_{4}, b_{5} \cdot p_{5}, b_{6} \cdot p_{6}$ is QLS-integral complete multipartite graph for every $t \in N$.

Proof. The proof is similar to that of corollary 4.2. The value of r is 94486392.
Remark 4.5. In [8] the following results for Q-integral graphs are given:

1. (see Theorem 7 of [8]) The complete tripartite graph

$$
K_{\frac{F_{2 n}^{2}-F_{2 n}}{2}, \frac{F_{2 n}^{2}+F_{2 n}}{2}, F_{2 n}^{2}-1}
$$

is Q-integral for $n \geq 2$, where $F_{0}=F_{1}=1, F_{n}=F_{n-1}+F_{n-2}$ are Fibonacci numbers.
2. (see Theorem 8 of [8]) The complete 4-partite graph $K_{3\left(b^{2}+1\right),\left(b^{2}+1\right)^{2}, 9 b^{2}, 3 b^{2}\left(b^{2}+1\right)}$ is Q-integral for any $b \in Z$.

Using Corollary 3.3 the graphs $\frac{K_{F_{2 n}^{2}}-F_{2 n}}{2}, \frac{F_{2 n}^{2}+F_{2 n}}{2 n}, F_{2 n}^{2}-1^{\prime}, K_{3\left(b^{2}+1\right),\left(b^{2}+1\right)^{2}, 9 b^{2}, 3 b^{2}\left(b^{2}+1\right)}$ are QLS-integral. Moreover, using
Theorems 3.1, 3.2 and Corollary 3.3 we can construct infinite classes of QLS-integral complete multipartite graphs for each of these graphs.

5. Conclusion

There are two ways of constructing infinite classes of QLS-integral complete $r^{\prime \prime}$-partite graphs for any QLS-integral r^{\prime}-partite graph. One of them follows from Corollary 3.4. It keeps the number of partites and multiplies the number of vertices in each partite by q. The second method follows from Theorems 3.1, 3.2 and Corollary 3.3. It keeps the number of vertices in each partite and enlarges number of partites. Note that we can combine these methods.

In the paper new infinite families of QLS-integral complete multipartite graphs $K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$, where $s=3,4,5,6$ are given, what partly answers the questions 4.1 and 4.2 of [10] and also the questions 4.1 and 4.2 of [14]. Howeover, when $s>6$, we have not found such QLS-integral complete multipartite graphs, so the problem of existence of QLS-integral complete multipartite graphs $K_{a_{1}, p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$ for $s>6$ remain open. Thus we raise the following question.

Question 1. Are there any QLS-integral complete multipartite graphs $K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$ where $s>6$?
The existence of QLS-integral complete multipartite graphs $K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$ where $a_{1}=a_{2}=\cdots=a_{s}=1$ and $s<5$ follows from [8] and this paper. Thus we raise the following question.

Question 2. Are there any QLS-integral complete multipartite graphs $K_{a_{1} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}}$ where $a_{1}=a_{2}=$ $\ldots=a_{s}=1$ and $s \geq 5$?

It is easy to see that $K_{p_{1}}$ and $K_{a_{1} \cdot p_{1}}$ are AQLS-integral for any $a_{1}, p_{1} \in N$. Complete bipartite graphs $K_{p_{1}, p_{2}}$ are AQLS-integral if and only if $p_{1} \cdot p_{2}$ is a perfect square. Thus we give the following question.

Question 3. Are there any AQLS-integral complete multipartite graphs $K_{p_{1}, p_{2}, \ldots, p_{s}}$ where $p_{1}<p_{2}<\cdots<p_{s}$ and $s>2$?

References

[1] K. Balińska, D. Cvetković, Z. Radosavljević, S. Simić, D. Stevanović, A survey on integral graphs, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat., 13 (2002) 42-65.
[2] D. Cvetković, S. K. Simić, Towards a Spectral Theory of Graphs Based on the Signless Laplacian I., Publ. Inst. Math. (Beograd) 85 (99) (2009) 19-33.
[3] F. Harary, A.J.Schwenk, Which Graphs Have Integral Spectra? Graphs and Combinatorics, Lecture Notes in Mathematics 406, Springer-Verlag, Berlin (1974) 45-51.
[4] P. Híc, M. Pokorný, New Classes of Integral Complete n-Partite Graphs, Advances and Applications in Discrete Mathematics 7, No. 2 (2011) 83-94.
[5] P. Híc, M. Pokorný, A Note on Integral Complete 4-partite Graphs, Discrete Math. 308 (2008) 3704-3705.
[6] P. Híc, M. Pokorný, P. Černek, New Sufficient Conditions for Integral Complete 3-partite Graphs, Appl. Anal. Discrete Math. 2 (2008) 276-284.
[7] S.M. Lv, L. Wei, H.X. Zhao, On the Seidel Integral Complete Multipartite Graphs, Acta Mathematicae Applicatae Sinica, English Series 28, No. 4 (2012) 705-710.
[8] M. Pokorný, P. Híc, D. Stevanović, Remarks on Q-integral Complete r-partite Graphs, Linear Algebra Appl. 439 (2013) $2029-2037$.
[9] D. Stevanović, N.M.M. de Abreu, M.A.A. de Freitas, R. Del-Vecchio, Walks and Regular Integral Graphs, Linear Algebra Appl. 423 (2007) 119-135.
[10] L.G. Wang, G.P. Zhao, K.Li, Seidel Integral Complete r-Partite Graphs, Graphs and Combinatorics 30 (2) (2014) 479-493.
[11] L.G. Wang, X.L. Li, C. Hoede, Integral Complete r-partite Graphs, Discrete Math. 283 (2004) 231-241.
[12] L.G. Wang, X.D. Liu, Integral complete multipartite graphs, Discrete Math. 308 (2008) 3860-3870.
[13] L.G. Wang, Q. Wang, Integral complete multipartite graphs $K_{a_{1}} \cdot p_{1}, a_{2} \cdot p_{2}, \ldots, a_{s} \cdot p_{s}$ with $s=5,6$, Discrete Math. 310 (2010) $812-818$.
[14] G.P. Zhao, L.G. Wang, K.Li, Q-integral complete r-partite graphs, Linear Algebra Appl. 438 (2013) 1067-1077.
[15] G.P. Zhao, L.G. Wang, The Laplacian polynomial of complete multipartite graphs, Fangzhi Gaoxiao Jichukexue Xuebao 24(2) (2011) 243-245.

[^0]: 2010 Mathematics Subject Classification. 05C50
 Keywords. complete r-partite graph, adjacency (Laplacian, signless Laplacian, Seidel) matrix, integral graph
 Received: 06 November 2013; Accepted: 13 February 2014
 Communicated by Francesco Belardo
 The research of the author has been supported by the bilateral Slovak-Serbian research grant SK-SRB-0018-11 and by the VEGA grant 1/0042/14 of Slovak Ministry of Education.

 Email address: mpokorny@truni.sk (Milan Pokorný)

